Analysis of catalytic determinants of diaminopimelate and ornithine decarboxylases using alternate substrates.
نویسندگان
چکیده
Diaminopimelate decarboxylase (DAPDC) and ornithine decarboxylase (ODC) are pyridoxal 5'-phosphate dependent enzymes that are critical to microbial growth and pathogenicity. The latter is the target of drugs that cure African sleeping sickness, while the former is an attractive target for antibacterials. These two enzymes share the (β/α)(8) (i.e., TIM barrel) fold with alanine racemase, another pyridoxal 5'-phosphate dependent enzyme critical to bacterial survival. The active site structural homology between DAPDC and ODC is striking even though DAPDC catalyzes the decarboxylation of a D stereocenter with inversion of configuration and ODC catalyzes the decarboxylation of an L stereocenter with retention of configuration. Here, the structural and mechanistic bases of these interesting properties are explored using reactions of alternate substrates with both enzymes. It is concluded that simple binding determinants do not control the observed stereochemical specificities for decarboxylation, and a concerted decarboxylation/proton transfer at Cα of the D stereocenter of diaminopimelate is a possible mechanism for the observed specificity with DAPDC.
منابع مشابه
Functional classification of amino acid decarboxylases from the alanine racemase structural family by phylogenetic studies.
Arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) are involved in the biosynthesis of putrescine, which is the precursor of other polyamines in animals, plants, and bacteria. These pyridoxal-5'-phosphate-dependent decarboxylases belong to the alanine racemase (AR) structural family together with diaminopimelate decarboxylase (DapDC), which catalyzes the final step of lysine biosynt...
متن کاملPseudomonas aeruginosa diaminopimelate decarboxylase: evolutionary relationship with other amino acid decarboxylases.
The lysA gene encodes meso-diaminopimelate (DAP) decarboxylase (E.C.4.1.1.20), the last enzyme of the lysine biosynthetic pathway in bacteria. We have determined the nucleotide sequence of the lysA gene from Pseudomonas aeruginosa. Comparison of the deduced amino acid sequence of the lysA gene product revealed extensive similarity with the sequences of the functionally equivalent enzymes from E...
متن کاملCrystal structure of Mycobacterium tuberculosis diaminopimelate decarboxylase, an essential enzyme in bacterial lysine biosynthesis.
The Mycobacterium tuberculosis lysA gene encodes the enzyme meso-diaminopimelate decarboxylase (DAPDC), a pyridoxal-5'-phosphate (PLP)-dependent enzyme. The enzyme catalyzes the final step in the lysine biosynthetic pathway converting meso-diaminopimelic acid (DAP) to l-lysine. The lysA gene of M. tuberculosis H37Rv has been established as essential for bacterial survival in immunocompromised m...
متن کاملIdentical catalytic-centre activity for mouse kidney and rat liver ornithine decarboxylases as determined with antizyme and affinity labelling.
Since the catalytic-centre activity of mouse kidney ornithine decarboxylase (ODC) has been assumed to be twice as high as that of rat liver ODC, we compared relative catalytic-centre activity of the two enzymes by titration with antizyme, which inhibits ODC by stoichiometric binding. In either a crude or a purified state, both enzymes were inhibited by rat liver antizyme to the same extent, ind...
متن کاملLithium BINOL Phosphate Catalyzed Desymmetrization of meso-Epoxides with Aromatic Thiols
A highly enantioselective method for desymmetrization of meso-epoxides using thiols is reported. This is the first example of epoxide activation achieved using metal BINOL phosphates. The reaction has a broad scope in terms of epoxide substrates and aromatic thiol nucleophiles. The resulting β-hydroxyl sulfides are obtained in excellent yield and enantioselectivity.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochimica et biophysica acta
دوره 1814 9 شماره
صفحات -
تاریخ انتشار 2011